Prenatal stress associated with infant gut microbes
June 23, 2020
Science Daily/University of Turku
Mother's chronic prenatal psychological distress and elevated hair cortisol concentrations are associated with gut microbiota composition of the infant, according to a new publication from the FinnBrain research project of the University of Turku, Finland. The results help to better understand how prenatal stress can be connected to infant growth and development. The study has been published in the Psychoneuroendocrinology journal.
Prenatal stress can be associated with infant growth and development. However, the mechanisms underlying this association are not yet fully understood.
"We were able to show that maternal chronic psychological distress and elevated hair cortisol concentrations during pregnancy are associated with infant gut microbiota composition but not diversity," says Doctoral Candidate, Doctor Anna Aatsinki.
The study used hair cortisol analysis which enabled measuring the concentration averages of stress hormone cortisol over several months. In addition, the symptoms of the mother were assessed three times during pregnancy. The infant gut microbiota was analysed early at the age of 2.5 months with next generation sequencing.
Previously, similar studies have focused on animals and two have been smaller human studies making this data consisting of 399 mothers and their infants the largest in the world so far. The received results provide significant new information on the phenomenon. In addition, this study was able to confirm previously made observations.
Studying the Role of Microbes as Mediators of Stress
Both Proteobacteria and Lactobacillus are common infant gut microbes.
"We discovered, for instance, that mother's chronic prenatal psychological distress was linked to increased abundances of Proteobacteria genera in infant microbiota. In addition, chronic psychological symptoms were connected to decreased abundances of Akkermansia genera which is considered to promote health at least in adults," summarises Aatsinki.
According to Aatsinki, it was also interesting that low cortisol concentrations were associated with increased abundances of Lactobacillus in infant gut microbiota. Lactobacillus bacteria are considered to promote health.
However, Proteobacteria also contain species that are able to cause inflammation in the body. Proteobacteria can also be associated with the child's disease risk later in life. Therefore, researchers consider it important to study how the observed changes are connected to later child development.
"Our study does not explain the cause-effect relationship, or whether prenatal psychological stress is linked to differences in microbial metabolic products or e.g. in immune system function. In other words, important questions still need to be answered," notes Aatsinki.
The study is part of the FinnBrain research project and its gut-brain axis sub-project. The sub-project led by Docent, Child and Adolescent Psychiatrist Linnea Karlsson studies how prenatal stress affects infant microbiota development and how infant gut microbes affect later brain development.
The FinnBrain research project of the University of Turku studies the combined influence of environmental and genetic factors on the development of children. Over 4,000 families participate in the research project and they are followed from infancy long into adulthood.
https://www.sciencedaily.com/releases/2020/06/200623145346.htm
Endurance exercise training has beneficial effects on gut microbiota composition
October 15, 2018
Science Daily/University of Jyväskylä - Jyväskylän yliopisto
According to recent research, endurance exercise training beneficially modifies gut microbiota composition. After six weeks of training, potentially inflammation causing microbes (Proteobacteria) decreased and microbes that are linked to enhanced metabolism (Akkermansia) increased.
Even though there was no significant drop in the weight of the subjects, exercise had other beneficial health effects, says Academy of Finland research fellow Satu Pekkala from the Faculty of Sport and Health Sciences of the University of Jyväskylä.
"We found that phospholipids and cholesterol in VLDL particles decreased in response to exercise. These changes are beneficial for cardiometabolic health because VLDL transports lipids from the liver to peripheral tissues, converts into 'bad' LDL cholesterol in the circulation, and thus has detrimental cardiovascular effects."
Exercise training also decreased Vascular adhesion protein-1 activity, which can have beneficial anti-inflammatory effects especially on vasculature, though the underlying mechanisms could not be determined in this study.
Whether Akkermansia mediates the health benefits of exercise is under further investigation
A few other cross-sectional studies have shown that microbes belonging to the Akkermansia genus are more abundant among physically active subjects than they are among inactive ones. Akkermansia has been a target of intense research recently, and some researchers believe that it may prevent obesity and diabetes.
"However, more studies are needed to prove that Akkermansia might mediate some of the health benefits of exercise," Pekkala says.
In addition to the composition of the gut microbiota, changes in their genes, that is, in their functionality, were studied.
"The abundance of the functional genes did not change much, which was perhaps to be expected because the diet did not change during training," Pekkala points out. "If the training period had been longer, greater effects probably would have been seen."
The research team made an exercise intervention for overweight women, which was completed by 17 subjects. Over a six-week period, previously sedentary women participated in three training sessions per week with a bicycle ergometer. The training intensity was controlled with heart rate. During the study, other lifestyle factors, including diet, were not changed in order to ensure that the effects of exercise could be observed. The research was carried out as a collaboration between the Faculty of Sport and Health Sciences of the University of Jyväskylä, University of Turku and the Spanish nonprofit research and healthcare organization FISABIO.
https://www.sciencedaily.com/releases/2018/10/181015105451.htm