Can/Psych 2 Larry Minikes Can/Psych 2 Larry Minikes

Chronic marijuana smoking affects brain chemistry, molecular imaging shows

June 13, 2011

Science Daily/Society of Nuclear Medicine

Definitive proof of an adverse effect of chronic marijuana use revealed at SNM's 58th Annual Meeting could lead to potential drug treatments and aid other research involved in cannabinoid receptors, a neurotransmission system receiving a lot of attention. Scientists used molecular imaging to visualize changes in the brains of heavy marijuana smokers versus non-smokers and found that abuse of the drug led to a decreased number of cannabinoid CB1 receptors, which are involved in not just pleasure, appetite and pain tolerance but a host of other psychological and physiological functions of the body.

 

"Addictions are a major medical and socioeconomic problem," says Jussi Hirvonen, MD, PhD, lead author of the collaborative study between the National Institute of Mental Health and National Institute on Drug Abuse, Bethesda, Md. "Unfortunately, we do not fully understand the neurobiological mechanisms involved in addiction. With this study, we were able to show for the first time that people who abuse cannabis have abnormalities of the cannabinoid receptors in the brain. This information may prove critical for the development of novel treatments for cannabis abuse. Furthermore, this research shows that the decreased receptors in people who abuse cannabis return to normal when they stop smoking the drug."

 

According to the National Institute on Drug Abuse, marijuana is the number-one illicit drug of choice in America. The psychoactive chemical in marijuana, or cannabis, is delta-9-tetrahydrocannabinol (THC), which binds to numerous cannabinoid receptors in the brain and throughout the body when smoked or ingested, producing a distinctive high. Cannabinoid receptors in the brain influence a range of mental states and actions, including pleasure, concentration, perception of time and memory, sensory perception, and coordination of movement. There are also cannabinoid receptors throughout the body involved in a wide range of functions of the digestive, cardiovascular, respiratory and other systems of the body. Currently two subtypes of cannabinoid receptors are known, CB1 and CB2, the former being involved mostly in functions of the central nervous system and the latter more in functions of the immune system and in stem cells of the circulatory system.

 

For this study, researchers recruited 30 chronic daily cannabis smokers who were then monitored at a closed inpatient facility for approximately four weeks. The subjects were imaged using positron emission tomography (PET), which provides information about physiological processes in the body. Subjects were injected with a radioligand, 18F-FMPEP-d2, which is a combination of a radioactive fluorine isotope and a neurotransmitter analog that binds with CB1 brain receptors.

 

Results of the study show that receptor number was decreased about 20 percent in brains of cannabis smokers when compared to healthy control subjects with limited exposure to cannabis during their lifetime. These changes were found to have a correlation with the number of years subjects had smoked. Of the original 30 cannabis smokers, 14 of the subjects underwent a second PET scan after about a month of abstinence. There was a marked increase in receptor activity in those areas that had been decreased at the outset of the study, an indication that while chronic cannabis smoking causes downregulation of CB1 receptors, the damage is reversible with abstinence.

 

Information gleaned from this and future studies may help other research exploring the role of PET imaging of CB1 receptors -- not just for drug use, but also for a range of human diseases, including metabolic disease and cancer.

https://www.sciencedaily.com/releases/2011/06/110606131705.htm

Read More
Can/Psych Larry Minikes Can/Psych Larry Minikes

Marijuana cuts lung cancer tumor growth in half

April 17, 2007

Science Daily/American Association for Cancer Research

The active ingredient in marijuana cuts tumor growth in common lung cancer in half and significantly reduces the ability of the cancer to spread, say researchers at Harvard University who tested the chemical in both lab and mouse studies.

 

They say this is the first set of experiments to show that the compound, Delta-tetrahydrocannabinol (THC), inhibits EGF-induced growth and migration in epidermal growth factor receptor (EGFR) expressing non-small cell lung cancer cell lines. Lung cancers that over-express EGFR are usually highly aggressive and resistant to chemotherapy.

 

THC that targets cannabinoid receptors CB1 and CB2 is similar in function to endocannabinoids, which are cannabinoids that are naturally produced in the body and activate these receptors. The researchers suggest that THC or other designer agents that activate these receptors might be used in a targeted fashion to treat lung cancer.

 

"The beauty of this study is that we are showing that a substance of abuse, if used prudently, may offer a new road to therapy against lung cancer," said Anju Preet, Ph.D., a researcher in the Division of Experimental Medicine.

 

Acting through cannabinoid receptors CB1 and CB2, endocannabinoids (as well as THC) are thought to play a role in variety of biological functions, including pain and anxiety control, and inflammation. Although a medical derivative of THC, known as Marinol, has been approved for use as an appetite stimulant for cancer patients, and a small number of U.S. states allow use of medical marijuana to treat the same side effect, few studies have shown that THC might have anti-tumor activity, Preet says. The only clinical trial testing THC as a treatment against cancer growth was a recently completed British pilot study in human glioblastoma.

 

In the present study, the researchers first demonstrated that two different lung cancer cell lines as well as patient lung tumor samples express CB1 and CB2, and that non-toxic doses of THC inhibited growth and spread in the cell lines. "When the cells are pretreated with THC, they have less EGFR stimulated invasion as measured by various in-vitro assays," Preet said.

 

Then, for three weeks, researchers injected standard doses of THC into mice that had been implanted with human lung cancer cells, and found that tumors were reduced in size and weight by about 50 percent in treated animals compared to a control group. There was also about a 60 percent reduction in cancer lesions on the lungs in these mice as well as a significant reduction in protein markers associated with cancer progression, Preet says.

 

Although the researchers do not know why THC inhibits tumor growth, they say the substance could be activating molecules that arrest the cell cycle. They speculate that THC may also interfere with angiogenesis and vascularization, which promotes cancer growth.

 

Preet says much work is needed to clarify the pathway by which THC functions, and cautions that some animal studies have shown that THC can stimulate some cancers. "THC offers some promise, but we have a long way to go before we know what its potential is," she said.

 

The research was presented at the 2007 meeting of the American Association for Cancer Research, held Apr 14-18, 2007 in Los Angeles, CA.

https://www.sciencedaily.com/releases/2007/04/070417193338.htm

Read More