Adolescence/Teens 18 Larry Minikes Adolescence/Teens 18 Larry Minikes

Studies link air pollution to mental health issues in children

September 25, 2019

Science Daily/Cincinnati Children's Hospital Medical Center

Three new studies by scientists at Cincinnati Children's Hospital Medical Center, in collaboration with researchers at the University of Cincinnati, highlight the relationship between air pollution and mental health in children.

 

A study to be published Sept. 25 in Environmental Health Perspectives found that short-term exposure to ambient air pollution was associated with exacerbations of psychiatric disorders in children one to two days later, as marked by increased utilization of the Cincinnati Children's emergency department for psychiatric issues. The study also found that children living in disadvantaged neighborhoods may be more susceptible to the effects of air pollution compared to other children, especially for disorders related to anxiety and suicidality.

 

The lead authors of this study are Cole Brokamp, PhD, and Patrick Ryan, PhD. They are researchers in the division of Biostatistics and Epidemiology at Cincinnati Children's.

 

"This study is the first to show an association between daily outdoor air pollution levels and increased symptoms of psychiatric disorders, like anxiety and suicidality, in children," says Dr. Brokamp. "More research is needed to confirm these findings, but it could lead to new prevention strategies for children experiencing symptoms related to a psychiatric disorder. The fact that children living in high poverty neighborhoods experienced greater health effects of air pollution could mean that pollutant and neighborhood stressors can have synergistic effects on psychiatric symptom severity and frequency."

 

Two other Cincinnati Children's studies were recently published that also link air pollution to children's mental health:

 ·      A study published in Environmental Research found an association between recent high traffic related air pollution (TRAP) exposure and higher generalized anxiety. The study is believed to be the first to use neuroimaging to link TRAP exposure, metabolic disturbances in the brain, and generalized anxiety symptoms among otherwise healthy children. The study found higher myoinositol concentrations in the brain -- a marker of the brain's neuroinflammatory response to TRAP.

·      The lead authors of this study are Kelly Brunst, PhD, a researcher in the department of Environmental Health at the University of Cincinnati, and Kim Cecil, PhD, a researcher at Cincinnati Children's.

·      A study published in Environmental Research found that exposure to TRAP during early life and across childhood was significantly associated with self-reported depression and anxiety symptoms in 12 year olds. Similar findings have been reported in adults, but research showing clear connections between TRAP exposure and mental health in children has been limited.

 

The lead authors of the study are Kimberly Yolton, PhD, director of research in the division of General and Community Pediatrics at Cincinnati Children's, and Dr. Ryan.

 

"Collectively, these studies contribute to the growing body of evidence that exposure to air pollution during early life and childhood may contribute to depression, anxiety, and other mental health problems in adolescence," says Dr. Ryan. "More research is needed to replicate these findings and uncover underlying mechanisms for these associations."

https://www.sciencedaily.com/releases/2019/09/190925075731.htm

Read More

Exposure to air pollution before and after birth may affect fundamental cognitive abilities

May 23, 2019

Science Daily/Barcelona Institute for Global Health (ISGlobal)

A growing body of research suggests that exposure to air pollution in the earliest stages of life is associated with negative effects on cognitive abilities. A new study led by the Barcelona Institute for Global Health (ISGlobal), a centre supported by "la Caixa," has provided new data: exposure to particulate matter with a diameter of less than 2.5 μm (PM2.5) during pregnancy and the first years of life is associated with a reduction in fundamental cognitive abilities, such as working memory and executive attention.

 

The study, carried out as part of the BREATHE project, has been published in Environmental Health Perspectives. The objective was to build on the knowledge generated by earlier studies carried out by the same team, which found lower levels of cognitive development in children attending schools with higher levels of traffic-related air pollution.

 

The study included 2,221 children between 7 and 10 years of age attending schools in the city of Barcelona. The children's cognitive abilities were assessed using various computerized tests. Exposure to air pollution at home during pregnancy and throughout childhood was estimated with a mathematical model using real measurements.

 

The study found that greater PM2.5 exposure from pregnancy until age 7 years was associated with lower working memory scores on tests administered between the ages of 7 and 10 years. The results suggest that exposure to fine particulate matter throughout the study period had a cumulative effect, although the associations were stronger when the most recent years of exposure were taken into account. Working memory is a cognitive system responsible for temporarily holding information for subsequent manipulation. It plays a fundamental role in learning, reasoning, problem-solving and language comprehension.

 

Sex-stratified analysis showed that the relationship between PM2.5 exposure and diminished working memory was found only in boys. "As yet, we don't understand what causes these differences, but there are various hormonal and genetic mechanisms that could lead to girls having a better response to inflammatory processes triggered by fine particulate matter and being less susceptible to the toxicity of these particles," commented Ioar Rivas, ISGlobal researcher and lead author of the study.

 

The study also found that higher exposure to particulate matter was associated with a reduction in executive attention in both boys and girls. Executive attention is one of the three networks that make up a person's attention capacity. It is involved in high-level forms of attention, such as the detection and resolution of conflicts between options and responses, error detection, response inhibition, and the regulation of thoughts and feelings.

 

Whereas previous studies in the BREATHE project analysed exposure to air pollution at schools over the course of a year, this study assessed exposures at the participants' homes over a much longer time: from the prenatal period to 7 years of age.

 

"This study reinforces our previous findings and confirms that exposure to air pollution at the beginning of life and throughout childhood is a threat to neurodevelopment and an obstacle that prevents children from reaching their full potential," commented Jordi Sunyer, Childhood and Environment Programme Coordinator at ISGlobal and last author of the study.

https://www.sciencedaily.com/releases/2019/05/190523104925.htm

Read More
HealthMedicine1 Larry Minikes HealthMedicine1 Larry Minikes

Air pollution may disrupt sleep

May 22, 2017

Science Daily/American Thoracic Society

High levels of air pollution over time may get in the way of a good night's sleep, according to new research.

 

"Prior studies have shown that air pollution impacts heart health and affects breathing and lung function, but less is known about whether air pollution affects sleep," said lead author Martha E. Billings, MD, MSc, assistant professor of medicine at the University of Washington. "We thought an effect was likely given that air pollution causes upper airway irritation, swelling and congestion, and may also affect the central nervous system and brain areas that control breathing patterns and sleep."

 

The researchers analyzed data from 1,863 participants (average age 68) in the Multi-Ethnic Study of Atherosclerosis (MESA) who also enrolled in both MESA's Sleep and Air Pollution studies. The researchers looked at two of the most common air pollutants: NO2 (traffic-related pollutant gas) and PM2.5, or fine-particle pollution. Using air pollution measurements gathered from hundreds of MESA Air and Environmental Protection Agency monitoring sites in six U.S. cities, plus local environment features and sophisticated statistical tools, the research team was able to estimate air pollution exposures at each participant's home at two time points: one year and five years.

 

Wrist actigraphy, which measures small movements, provided detailed estimates of sleep and wake patterns over seven consecutive days. This was used to calculate "sleep efficiency" -- a measure of the percentage of time in bed spent asleep vs. awake. Researchers found that the sleep efficiency of the lowest 25 percent of participants was 88 percent or less. The research team studied if pollution exposures differed among those in this low sleep efficiency group.

 

The population was divided into "fourths" according to levels of pollution. The quarter of those who experienced the highest levels of pollution was compared to the quarter with the lowest levels.

 

The study found:

 

The group with the highest levels of NO2 over five years had an almost 60 percent increased likelihood of having low sleep efficiency compared to those with the lowest NO2 levels. The group with the highest exposures to small particulates (PM2.5) had a nearly 50 percent increased likelihood of having low sleep efficiency.

 

The authors adjusted for a range of factors, including age, body mass, obstructive sleep apnea, race/ethnicity, income and smoking status. They also adjusted for neighborhood socioeconomic status.

 

The researchers were particularly interested in chronic exposure to air pollution and what that long-term exposure might mean for sleep health. "There may be acute sleep effects to short-term exposure to high pollution levels as well, but we lacked the data to study that link," Dr. Billings said, noting that the parent MESA study is investigating the chronic effects of air pollution on cardiovascular health.

 

"These new findings indicate the possibility that commonly experienced levels of air pollution not only affect heart and lung disease, but also sleep quality. Improving air quality may be one way to enhance sleep health and perhaps reduce health disparities," Dr. Billings said.

 

Future studies, she added, need to explore the association between other air pollutants and sleep, the mechanisms by which these pollutants may disrupt sleep patterns and whether traffic noise is the driving factor contributing to poor sleep quality.

https://www.sciencedaily.com/releases/2017/05/170522080830.htm

Read More