Can/Psych 5 Larry Minikes Can/Psych 5 Larry Minikes

Natural chemical helps brain adapt to stress

March 29, 2017

Science Daily/Vanderbilt University Medical Center

A natural signaling molecule that activates cannabinoid receptors in the brain plays a critical role in stress-resilience -- the ability to adapt to repeated and acute exposures to traumatic stress, according to researchers at Vanderbilt University Medical Center.

 

The findings in a mouse model could have broad implications for the potential treatment and prevention of mood and anxiety disorders, including major depression and post-traumatic stress disorder (PTSD), they reported in the journal Nature Communications.

 

"The study suggests that deficiencies in natural cannabinoids could result in a predisposition to developing PTSD and depression," said Sachin Patel, M.D., Ph.D., director of the Division of Addiction Psychiatry at Vanderbilt University School of Medicine and the paper's corresponding author.

 

"Boosting this signaling system could represent a new treatment approach for these stress-linked disorders," he said.

 

Patel, the James G. Blakemore Professor of Psychiatry, received a Presidential Early Career Award for Scientists and Engineers last year for his pioneering studies of the endocannabinoid family of signaling molecules that activate the CB1 and CB2 cannabinoid receptors in the brain.

 

Tetrahydrocannabinol (THC), the active compound in marijuana, binds the CB1 receptor, which may explain why relief of tension and anxiety is the most common reason cited by people who use marijuana chronically.

 

Patel and his colleagues previously have found CB1 receptors in the amygdala, a key emotional hub in the brain involved in regulating anxiety and the fight-or-flight response. They also showed in animal models that anxiety increases when the CB1 receptor is blocked by a drug or its gene is deleted.

 

More recently they reported anxiety-like and depressive behaviors in genetically modified mice that had an impaired ability to produce 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid. When the supply of 2-AG was increased by blocking an enzyme that normally breaks it down, the behaviors were reversed.

 

In the current study, the researchers tested the effects of increasing or depleting the supply of 2-AG in the amygdala in two populations of mice: one previously determined to be susceptible to the adverse consequences of acute stress, and the other which exhibited stress-resilience.

 

Augmenting the 2-AG supply increased the proportion of stress-resilient mice overall and promoted resilience in mice that were previously susceptible to stress, whereas depleting 2-AG rendered previously stress-resilient mice susceptible to developing anxiety-like behaviors after exposure to acute stress.

 

Taken together, these results suggest that 2-AG signaling through the CB1 receptor in the amygdala promotes resilience to the adverse effects of acute traumatic stress exposure, and support previous findings in animal models and humans suggesting that 2-AG deficiency could contribute to development of stress-related psychiatric disorders.

 

Marijuana use is highly cited by patients with PTSD as a way to control symptoms. Similarly, the Vanderbilt researchers found that THC promoted stress-resilience in previously susceptible mice.

 

However, marijuana use in psychiatric disorders has obvious drawbacks including possible addiction and cognitive side effects, among others. The Vanderbilt study suggests that increasing production of natural cannabinoids may be an alternative strategy to harness the therapeutic potential of this signaling system.

 

If further research finds that some people with stress-related mood and anxiety disorders have low levels of 2-AG, replenishing the supply of this endocannabinoid could represent a novel treatment approach and might enable some of them to stop using marijuana, the researchers concluded.

https://www.sciencedaily.com/releases/2017/03/170329140945.htm

Read More
Can/Psych 2 Larry Minikes Can/Psych 2 Larry Minikes

Chronic marijuana smoking affects brain chemistry, molecular imaging shows

June 13, 2011

Science Daily/Society of Nuclear Medicine

Definitive proof of an adverse effect of chronic marijuana use revealed at SNM's 58th Annual Meeting could lead to potential drug treatments and aid other research involved in cannabinoid receptors, a neurotransmission system receiving a lot of attention. Scientists used molecular imaging to visualize changes in the brains of heavy marijuana smokers versus non-smokers and found that abuse of the drug led to a decreased number of cannabinoid CB1 receptors, which are involved in not just pleasure, appetite and pain tolerance but a host of other psychological and physiological functions of the body.

 

"Addictions are a major medical and socioeconomic problem," says Jussi Hirvonen, MD, PhD, lead author of the collaborative study between the National Institute of Mental Health and National Institute on Drug Abuse, Bethesda, Md. "Unfortunately, we do not fully understand the neurobiological mechanisms involved in addiction. With this study, we were able to show for the first time that people who abuse cannabis have abnormalities of the cannabinoid receptors in the brain. This information may prove critical for the development of novel treatments for cannabis abuse. Furthermore, this research shows that the decreased receptors in people who abuse cannabis return to normal when they stop smoking the drug."

 

According to the National Institute on Drug Abuse, marijuana is the number-one illicit drug of choice in America. The psychoactive chemical in marijuana, or cannabis, is delta-9-tetrahydrocannabinol (THC), which binds to numerous cannabinoid receptors in the brain and throughout the body when smoked or ingested, producing a distinctive high. Cannabinoid receptors in the brain influence a range of mental states and actions, including pleasure, concentration, perception of time and memory, sensory perception, and coordination of movement. There are also cannabinoid receptors throughout the body involved in a wide range of functions of the digestive, cardiovascular, respiratory and other systems of the body. Currently two subtypes of cannabinoid receptors are known, CB1 and CB2, the former being involved mostly in functions of the central nervous system and the latter more in functions of the immune system and in stem cells of the circulatory system.

 

For this study, researchers recruited 30 chronic daily cannabis smokers who were then monitored at a closed inpatient facility for approximately four weeks. The subjects were imaged using positron emission tomography (PET), which provides information about physiological processes in the body. Subjects were injected with a radioligand, 18F-FMPEP-d2, which is a combination of a radioactive fluorine isotope and a neurotransmitter analog that binds with CB1 brain receptors.

 

Results of the study show that receptor number was decreased about 20 percent in brains of cannabis smokers when compared to healthy control subjects with limited exposure to cannabis during their lifetime. These changes were found to have a correlation with the number of years subjects had smoked. Of the original 30 cannabis smokers, 14 of the subjects underwent a second PET scan after about a month of abstinence. There was a marked increase in receptor activity in those areas that had been decreased at the outset of the study, an indication that while chronic cannabis smoking causes downregulation of CB1 receptors, the damage is reversible with abstinence.

 

Information gleaned from this and future studies may help other research exploring the role of PET imaging of CB1 receptors -- not just for drug use, but also for a range of human diseases, including metabolic disease and cancer.

https://www.sciencedaily.com/releases/2011/06/110606131705.htm

Read More
Can/Psych 1 Larry Minikes Can/Psych 1 Larry Minikes

Cannabis Use, Effect and Potential Therapy for Alzheimer's, MS and Parkinson's

October 15, 2007

Science Daily/European College of Neuropsychopharmacology

Cannabis (marijuana) is the most widely produced plant-based illicit drug worldwide and the illegal drug most frequently used in Europe. Its use increased in almost all EU countries during the 1990s, in particular among young people, including school students. Cannabis use is highest among 15- to 24-year-olds, with lifetime prevalence ranging for most countries from 20--40% (EMCDDA 2006).

 

Recently there has been a new surge in the level of concern about potential social and health outcomes of cannabis use, although the available evidence still does not provide a clear-cut understanding of the issues. Intensive cannabis use is correlated with non-drug-specific mental problems, but the question of co-morbidity is intertwined with the questions of cause and effect (EMCDDA 2006). Prevention is of importance in adolescents, which is underlined by evidence that early-onset cannabis-users (pre- to mid-adolescence) have a significantly higher risk of developing drug problems, including dependence (Von Sydow et al., 2002; Chen et al., 2005).

 

The illegal status and wide-spread use of cannabis made basic and clinical cannabis research difficult in the past decades; on the other hand, it has stimulated efforts to identify the psychoactive constituents of cannabis. As a consequence, the endocannabinoid system was discovered, which was shown to be involved in most physiological systems -- the nervous, the cardiovascular, the reproductive, the immune system, to mention a few.

 

One of the main roles of endocannabinoids is neuroprotection, but over the last decade they have been found to affect a long list of processes, from anxiety, depression, cancer development, vasodilatation to bone formation and even pregnancy (Panikashvili et al., 2001; Pachter et al., 2006).

 

Cannabinoids and endocannabinoids are supposed to represent a medicinal treasure trove which waits to be discovered.

 

Raphael Mechoulam will tell the discovery story of the endocannabinoid system. His research has not only helped us to advance our understanding of cannabis use and its effects, but has also made key contributions with regard to understanding "neuroprotection," and has opened the door for the development of new drugs.

 

Endocannabinoid system

In the 1960s the constituent of the cannabis plant was discovered -- named tetrahydrocannabinol, or THC -- which causes the 'high' produced by it (Gaoni & Mechoulam, 1964). Thousands of publications have since appeared on THC. Today it is even used as a therapeutic drug against nausea and for enhancing appetite, and, surprisingly, has not become an illicit drug -- apparently cannabis users prefer the plant-based marijuana and hashish.

 

Two decades later it was found that THC binds to specific receptors in the brain and the periphery and this interaction initiates a cascade of biological processes leading to the well known marijuana effects. It was assumed that a cannabinoid receptor is not formed for the sake of a plant constituent (that by a strange quirk of nature binds to it), but for endogenous brain constituents and that these putative 'signaling' constituents together with the cannabinoid receptors are part of a new biochemical system in the human body, which may affect various physiological actions. 

 

In trying to identify these unknown putative signaling molecules, our research group in the 1990s was successful in isolating 2 such endogenous 'cannabinoid' components -- one from the brain, named anandamide (from the word ´ananda, meaning ´supreme joy´ in Sanscrit), and another one from the intestines named 2-arachidonoyl glycerol (2-AG) (Devane et al., 1992; Mechoulam et al., 1995).

 

Neuroprotection

The major endocannabinoid (2-AG) has been identified both in the central nervous system and in the periphery. Stressful stimuli -- traumatic brain injury (TBI) for example -- enhance brain 2-AG levels in mice. 2-AG, both of endogenous and exogenous origin, has been shown to be neuroprotective in closed head injury, ischemia and excitotoxicity in mice. These effects may derive from the ability of cannabinoids to act through a variety of biochemical mechanisms. 2-AG also helps repair the blood brain barrier after TBI. 

 

The endocannabinoids act via specific cannabinoid receptors, of which the CB1 receptors are most abundant in the central nervous system. Mice whose CB1 receptors are knocked out display slower functional recovery after TBI and do not respond to treatment with 2-AG. Over the last few years several groups have noted that CB2 receptors are also formed in the brain, particularly as a reaction to numerous neurological diseases, and are apparently activated by the endocannabinoids as a protective mechanism.

 

Through evolution the mammalian body has developed various systems to guard against damage that may be caused by external attacks. Thus, it has an immune system, whose main role is to protect against protein attacks (microbes, parasites for example) and to reduce the damage caused by them. Analogous biological protective systems have also been developed against non-protein attacks, although they are much less well known than the immune system. Over the last few years the research group of Esther Shohami in collaboration with our group showed that the endocannabinoid system, through various biological routes, lowers the damage caused by brain trauma. Thus, it helps to attenuate the brain edema and the neurological injuries caused by it (Panikashvili et al., 2001; Panikashvili et al., 2006).

 

Clinical importance

Furthermore it is assumed that the endocannabinoid system may be involved in the pathogenesis of hepatic encephalopathy, a neuropsychiatric syndrome induced by fulminant hepatic failure. Indeed in an animal model the brain levels of 2-AG were found to be elevated. Administration of 2-AG improved a neurological score, activity and cognitive function (Avraham et al., 2006). Activation of the CB2 receptor by a selective agonist also improved the neurological score. The authors concluded that the endocannabinoid system may play an important role in the pathogenesis of hepatic encephalopathy. 

 

Modulation of this system either by exogenous agonists specific for the CB2 receptors or possibly also by antagonists to the CB1 receptors may have therapeutic potential. The endocannabinoid system generally is involved in the protective reaction of the mammalian body to a long list of neurological diseases such as multiple sclerosis, Alzheimer's and Parkinson's disease. Thus, there is hope for novel therapeutic opportunities.

 

Numerous additional endocannabinoids -- especially various fatty acid ethanolamides and glycerol esters -- are known today and regarded as members of a large ´endocannabinoid family´. Endogenous cannabinoids, the cannabinoid receptors and various enzymes that are involved in their syntheses and degradations comprise the endocannabinoid system.

 

The endocannabinoid system acts as a guardian against various attacks on the mammalian body.

 

Conclusion

The above described research concerning the endocannabinoid-system is of importance in both basic science and in therapeutics:

·     The discovery of the cannabis plant active constituent has helped advance our understanding of cannabis use and its effects.

·     The discovery of the endocannabinoids has been of central importance in establishing the existence of a new biochemical system and its physiological roles -- in particular in neuroprotection.

·     These discoveries have opened the door for the development of novel types of drugs, such as THC for the treatment of nausea and for enhancing appetite in cachectic patients.

·     The endocannabinoid system is involved in the protective reaction of the mammalian body to a long list of neurological diseases such as multiple sclerosis, Alzheimer's and Parkinson's disease which raises hope for novel therapeutic opportunities for these diseases.

References

Avraham Y, Israeli E, Gabbay E, et al. Endocannabinoids affect neurological and cognitive function in thioacetamide-induced hepatic encephalopathy in mice. Neurobiology of Disease 2006;21:237-245

Chen CY, O´Brien MS, Anthony JC. Who becomes cannabis dependent soon after onset of use" Epidemiological evidence from the United States: 2000-2001. Drug and alcohol dependence 2005;79:11-22

Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992;258:1946-1949

[EMCDDA 2006] European Monitoring Centre for Drugs and Drug Addiction. The state of the drugs problem in Europe. Annual Report 2006 (http://www.emcdda.europa.eu)

Gaoni Y, Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish. J Amer Chem Soc 1964;86:1646-1647

Journal Interview 85: Conversation with Raphael Mechoulam. Addiction 2007;102:887-893

Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995;50:83-90

Mechoulam R, Panikashvili D, Shohami E. Cannabinoids and brain injury. Trends Mol Med 2002;8:58-61

Pachter P, Batkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006;58:389-462

Panikashvili D, Simeonidou C, Ben-Shabat S, et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 2001;413:527-531

Panikashvili D, Shein NA, Mechoulam R, et al. The endocannabinoid 2-AG protects the blood brain barrier after closed head injury and inhibits mRNA expression of proinflammatory cytokines. Neurobiol Disease 2006;22:257-264

Von Sydow K, Lieb R, Pfister H, et al. What predicts incident use of cannabis and progression to abuse and dependence" A 4-year prospective examination of risk factors in a community sample of adolescents and young adults. Drug and alcohol dependence 2002;68:49-64

https://www.sciencedaily.com/releases/2007/10/071014163644.htm

 

Read More
Can/Psych Larry Minikes Can/Psych Larry Minikes

Brain's receptors sensitive to pot may 'open door' in treating drug dependence, brain disorders

June 7, 2006

Science Daily/Society of Nuclear Medicine

A team of Johns Hopkins researchers developed a new radiotracer—a radioactive substance that can be traced in the body—to visualize and quantify the brain’s cannabinoid receptors by positron emission tomography (PET), opening a door to the development of new medications to treat drug dependence, obesity, depression, schizophrenia, Parkinson’s disease and Tourette syndrome.

 

Discovery of the [11C]JHU75528 radioligand, a radioactive biochemical substance that is used to study the receptor systems of the brain, “opens an avenue for noninvasive study of central cannabinoid (CB1) receptors in the human and animal brain,” explained Andrew Horti, assistant professor of radiology at Johns Hopkins Medicine, Baltimore, Md. He explained that there is evidence that CB1 receptors play an essential role in many disorders including schizophrenia, depression and motor function disorders. “Quantitative imaging of the central CB1 using PET could provide a great opportunity for the development of cannabinergic medications and for studying the role of CB1 in these disorders,” added the co-author of “PET Imaging of Cerebral Cannabinoid CB1 Receptors with [11C]JHU75528.”

 

Cannabinoid receptors are proteins on the surface of brain cells; they are most dense in brain regions involved with thinking and memory, attention and control of movement. The effects of tetrahydrocannabinol (THC), the primary psychoactive compound in marijuana, are due to its binding to specific cannabinoid receptors located on the surface of brain cells. “Blocking CB1 receptors presents the possibility of developing new, emerging medications for treatment of obesity and drug dependence including alcoholism, tobacco and marijuana smoking,” said Horti.

 

The usefulness of in vivo (in the body) radioligands for studying cerebral receptors by PET depends on the image quality, and a good PET radiotracer must display a high level of specific receptor binding and low non-specific binding (binding with other proteins, cell membranes, etc.), said Horti. “If the non-specific binding is too high and specific binding is too low, the PET images become too ‘noisy’ for quantitative measurements,” he noted. “We developed a PET radiotracer with a unique combination of good CB1 binding affinity and relatively low non-specific binding in mice and baboon brains,” he added. “Previously developed PET radioligands for imaging of CB1 receptors were not suitable for quantitative imaging due to the high level of image ‘noise,’” he added.

 

“Even though PET methodology was developed 30 years ago, its application for studying cerebral receptors is limited due to the lack of suitable radioligands,” said Horti. “Development of [11C]JHU75528 will allow noninvasive research of CB1 receptor,” he added, indicating that Johns Hopkins researchers need to complete various safety studies and obtain Food and Drug Administration approval before [11C]JHU75528 can be used for PET imaging in people.

 

“This discovery would not have been possible without involvement of many highly qualified researchers, including the teams of Robert Dannals and Dean Wong and support of Richard Wahl, director of the nuclear medicine department,” said Horti.

https://www.sciencedaily.com/releases/2006/06/060607082641.htm

Read More
Can/Psych Larry Minikes Can/Psych Larry Minikes

Mouse Model Links Alcohol Intake to Marijuana-like Brain Compounds

January 21, 2003

Science Daily/NIH/National Institute On Alcohol Abuse And Alcoholism

Brain molecules similar to the active compound in marijuana help to regulate alcohol consumption, according to new reports by scientists at the National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, Maryland, and a separate NIAAA-supported group at several New York state research institutions.

 

In studies conducted with a strain of mice known to have a high preference for alcohol, the scientists found greatly reduced alcohol intake in mice specially bred to lack CB1, the brain receptor for innate marijuana-like substances known as endocannabinoids. The effect was age dependent, the Bethesda group found. The New York scientists showed that the endocannabinoid system activates a brain region known as the nucleus accumbens, which plays a major role in mediating the rewarding effects of alcohol. Both groups had shown that alcohol intake among normal mice of the same alcohol-preferring strain could be reduced by treating the animals with a drug that blocks CB1 receptors in the brain.

 

The new reports appear in the early online versions of the Proceedings of the National Academy of Sciences, Volume 20, Number 3, at www.pnas.org and the Journal of Neurochemistry, Volume 24, Number 4, at www.blackwell-synergy.com/servlet/useragent?func=showIssues&code=jnc in the week beginning January 20, 2003 (specific dates to be determined).

 

"These are important findings," notes NIAAA Director Ting-Kai Li, M.D. "Implicating yet another neurochemical mechanism in alcohol consumption opens another potential avenue for the development of new pharmacologic agents to prevent and treat alcohol problems."

 

The brain's multiple communication pathways employ a wide variety of signaling molecules known as neurotransmitters to relay messages from one brain cell to another. Researchers have found that alcohol affects numerous neurotransmitters and that a variety of brain pathways are involved in alcohol abuse and dependence. Determining precisely how alcohol interacts with brain cells and affects brain chemistry is an ongoing focus of research. Knowledge gained through this research helps scientists develop drugs to diminish the desire to consume alcohol and to counteract alcohol's effects.

 

Since their discovery in the early 1990's, endocannabinoids and endocannabinoid receptors have been studied intensely by alcohol and drug abuse researchers. Recent animal studies have suggested that the so-called "endocannabinoid system" is involved in some of the pharmacologic effects of alcohol and in drinking behavior.

 

In one of the current studies, researchers led by George Kunos, M.D., Ph.D., Scientific Director of NIAAA's Division of Intramural Biological and Clinical Research, found that, among the normal, alcohol-preferring mice–that is, those with intact CB1 receptors–the animals' appetite for both alcohol and food decreased with age. This occurred even though levels of endocannabinoids and the density of CB1 receptors were found to be similar in the brains of young and old mice.

 

"Although unexpected," says Dr. Kunos, "the observed age-dependent decline in alcohol preference in mice parallels observations in humans, in that only some teenage binge drinkers become alcoholics as adults, and that the onset of alcoholism declines with age."

 

The researchers found a possible explanation for this phenomenon by comparing the efficiency of the signal sent by the CB1 receptors in different regions of the brain in young and old mice. In old mice, they found diminished CB1 signaling in an area known as the limbic forebrain. The part of the limbic forebrain known as the nucleus accumbens plays a major role in mediating the rewarding properties of alcohol and cannabinoids and also is thought to help regulate appetite. The nucleus accumbens exerts its effects through the release of the neurotransmitter dopamine. Alcohol ingestion typically elicits a robust release of dopamine from the nucleus accumbens.

 

The second report by NIAAA-supported scientists led by Basalingappa L. Hungund, Ph.D., of the New York State Psychiatric Institute and Nathan S. Kline Institute for Psychiatric Research in Orangeburg, New York, complements the findings of the Kunos research team. Dr. Hungund and colleagues found that, in addition to showing a dramatic reduction in alcohol intake, alcohol-preferring mice that lack CB1 receptors release no dopamine from the nucleus accumbens after they drink alcohol. In mice with intact CB1 receptors, the researchers were able to abolish alcohol-induced release of dopamine from the nucleus accumbens by treating the animals with a drug that blocks CB1 receptors.

 

"Our results," says coauthor Balapal Basavarajappa, Ph.D., "clearly suggest that the CB1 receptor system is involved in ethanol-induced dopamine release in the nucleus accumbens and indicate that activation of the limbic dopamine system is required for the reinforcing effects of alcohol. They further suggest an interaction between the cannabinoidergic and dopaminergic systems in the reinforcing properties of drugs of abuse, including alcohol."

 

"Taken together," adds Dr. Kunos, "these findings provide unequivocal evidence for the role of endocannabinoids and CB1 in alcohol drinking behavior in rodents, and suggest that the CB1 receptor may be a promising pharmacotherapy target."

 

The National Institute on Alcohol Abuse and Alcoholism, a component of the National Institutes of Health, U.S. Department of Health and Human Services, conducts and supports approximately 90 percent of U.S. research on the causes, consequences, prevention, and treatment of alcohol abuse, alcoholism, and alcohol problems. NIAAA disseminates research findings to scientists, practitioners, policy makers, and the general public.

https://www.sciencedaily.com/releases/2003/01/030121080758.htm

Read More
Cannabis/Psychedelic 7 Larry Minikes Cannabis/Psychedelic 7 Larry Minikes

Go for a run or eat chocolate: A choice dictated by the cannabinoid receptors

March 19, 2019

INSERM (Institut national de la santé et de la recherche médicale)

Physical inactivity is a common factor in lifestyle diseases -- and one that is often linked to the excessive consumption of fatty and/or sugary foods. The opposite scenario of excessive physical activity at the expense of caloric intake can also be harmful, as cases of anorexia nervosa illustrate. These data therefore point to the crucial need to research the neurobiological processes that control the respective motivations for exercise and food intake. A study by Inserm and CNRS researchers published on March 7, 2019 in JCI Insight reveals that the cannabinoid type 1 (CB1) receptors play an essential role in the choice between running and eating chocolatey food.

 

The authors of this paper had previously reported that the cannabinoid type-1 (CB1) receptors, present on several types of neurons, play a key role in performance during physical activity in mice. A conclusion based on the performances achieved by animals with free access to an exercise wheel -- a model in which it was not possible to distinguish the mechanism involved (motivation, pleasure...). Given that the motivation for a reward can only be estimated by measuring the efforts that the individual -- whether human or animal -- is prepared to make to get that reward, the researchers devised a model in which each access to the wheel was conditional on a prior effort. This involved the animal repeatedly introducing its snout into a recipient, an essential prerequisite for unlocking the wheel. After a training period during which the level of effort required to unlock the wheel remained the same, the mice were confronted with a test in which the effort required was gradually increased. When exposed to this test, the mice lacking CB1 receptors showed an 80 % deficit in the maximum effort they were prepared to make to unlock the wheel, and without a decrease in performance during their access to it. This finding indicates that the CB1 receptors play a major role in controlling motivation for exercise. The use of other genetically-modified mice also enabled the researchers to demonstrate that these CB1 receptors controlling motivation for exercise are located on GABAergic neurons.

 

The researchers then examined whether the CB1 receptors in the GABAergic neurons control the motivation for another reward: chocolatey food (like humans, mice love it even when they are otherwise well-fed). While the CB1 receptors also play a role in motivation for food -- albeit to a lesser extent than in motivation for exercise -- the CB1 receptors located on the GABAergic neurons are not implicated in the motivation for eating chocolatey food.

 

In our daily life, we are faced with an ongoing choice between various rewards. A fact which has encouraged the researchers to develop a model in which following a learning period the mice had the choice -- in return for the efforts described above -- between exercise and chocolatey food. The motivation for exercise was greater than that for chocolatey food, with the exception of the mice lacking CB1 -- whether generally or just on GABAergic neurons -- whose preference was for the food.

 

In addition to these findings indicating that the cannabinoid receptor is essential for the motivation for exercise, this study opens up avenues for researching the neurobiological mechanisms behind pathological increases in this motivation. One illustration is provided by anorexia nervosa which often combines the decreased motivation to eat with an increased motivation to exercise.

https://www.sciencedaily.com/releases/2019/03/190319121721.htm

Read More