Blue light may not be as disruptive to our sleep patterns as originally thought
December 16, 2019
Science Daily/University of Manchester
Contrary to common belief, blue light may not be as disruptive to our sleep patterns as originally thought -- according to scientists. According to the team, using dim, cooler, lights in the evening and bright warmer lights in the day may be more beneficial to our health.
According to the team, using dim, cooler, lights in the evening and bright warmer lights in the day may be more beneficial to our health.
Twilight is both dimmer and bluer than daylight, they say, and the body clock uses both of those features to determine the appropriate times to be asleep and awake.
Current technologies designed to limit our evening exposure to blue light, for example by changing the screen colour on mobile devices, may therefore send us mixed messages, they argue.
This is because the small changes in brightness they produce are accompanied by colours that more resemble day.
The research, which was carried out on mice, used specially designed lighting that allowed the team to adjust colour without changing brightness.
That showed blue colours produced weaker effects on the mouse body clock than equally bright yellow colours.
The findings, say the team, have important implications for the design of lighting and visual displays intended to ensure healthy patterns of sleep and alertness.
The study is published in Current Biology and funded by the Biotechnology and Biological Sciences Research Council.
The body clock uses a specialised light sensitive protein in the eye to measure brightness, called melanopsin, which is better at detecting shorter wavelength photons.
This is why, say the team, researchers originally suggested blue light might have a stronger effect.
However, our perception of colour comes from the retinal cone cells and the new research shows that the blue colour signals they supply reduce the impact on light on the clock.
Dr Tim Brown, from The University of Manchester, said: "We show the common view that blue light has the strongest effect on the clock is misguided; in fact, the blue colours that are associated with twilight have a weaker effect than white or yellow light of equivalent brightness.
"There is lots of interest in altering the impact of light on the clock by adjusting the brightness signals detected by melanopsin but current approaches usually do this by changing the ratio of short and long wavelength light; this provides a small difference in brightness at the expense of perceptible changes in colour."
He added: "We argue that this is not the best approach, since the changes in colour may oppose any benefits obtained from reducing the brightness signals detected by melanopsin.
"Our findings suggest that using dim, cooler, lights in the evening and bright warmer lights in the day may be more beneficial.
"Research has already provided evidence that aligning our body clocks with our social and work schedules can be good for our health. Using colour appropriately could be a way to help us better achieve that."
https://www.sciencedaily.com/releases/2019/12/191216173654.htm
Daily exposure to blue light may accelerate aging, even if it doesn't reach your eyes
Woman looking at blue light from at computer screen (stock image). Credit: © Alliance / Adobe Stock
October 17, 2019
Science Daily/Oregon State University
Prolonged exposure to blue light, such as that which emanates from your phone, computer and household fixtures, could be affecting your longevity, even if it's not shining in your eyes.
New research at Oregon State University suggests that the blue wavelengths produced by light-emitting diodes damage cells in the brain as well as retinas.
The study, published today in Aging and Mechanisms of Disease, involved a widely used organism, Drosophila melanogaster, the common fruit fly, an important model organism because of the cellular and developmental mechanisms it shares with other animals and humans.
Jaga Giebultowicz, a researcher in the OSU College of Science who studies biological clocks, led a research collaboration that examined how flies responded to daily 12-hour exposures to blue LED light -- similar to the prevalent blue wavelength in devices like phones and tablets -- and found that the light accelerated aging.
Flies subjected to daily cycles of 12 hours in light and 12 hours in darkness had shorter lives compared to flies kept in total darkness or those kept in light with the blue wavelengths filtered out. The flies exposed to blue light showed damage to their retinal cells and brain neurons and had impaired locomotion -- the flies' ability to climb the walls of their enclosures, a common behavior, was diminished.
Some of the flies in the experiment were mutants that do not develop eyes, and even those eyeless flies displayed brain damage and locomotion impairments, suggesting flies didn't have to see the light to be harmed by it.
"The fact that the light was accelerating aging in the flies was very surprising to us at first," said Giebultowicz, a professor of integrative biology. "We'd measured expression of some genes in old flies, and found that stress-response, protective genes were expressed if flies were kept in light. We hypothesized that light was regulating those genes. Then we started asking, what is it in the light that is harmful to them, and we looked at the spectrum of light. It was very clear cut that although light without blue slightly shortened their lifespan, just blue light alone shortened their lifespan very dramatically."
Natural light, Giebultowicz notes, is crucial for the body's circadian rhythm -- the 24-hour cycle of physiological processes such as brain wave activity, hormone production and cell regeneration that are important factors in feeding and sleeping patterns.
"But there is evidence suggesting that increased exposure to artificial light is a risk factor for sleep and circadian disorders," she said. "And with the prevalent use of LED lighting and device displays, humans are subjected to increasing amounts of light in the blue spectrum since commonly used LEDs emit a high fraction of blue light. But this technology, LED lighting, even in most developed countries, has not been used long enough to know its effects across the human lifespan."
Giebultowicz says that the flies, if given a choice, avoid blue light.
"We're going to test if the same signaling that causes them to escape blue light is involved in longevity," she said.
Eileen Chow, faculty research assistant in Giebultowicz's lab and co-first author of the study, notes that advances in technology and medicine could work together to address the damaging effects of light if this research eventually proves applicable to humans.
"Human lifespan has increased dramatically over the past century as we've found ways to treat diseases, and at the same time we have been spending more and more time with artificial light," she said. "As science looks for ways to help people be healthier as they live longer, designing a healthier spectrum of light might be a possibility, not just in terms of sleeping better but in terms of overall health."
In the meantime, there are a few things people can do to help themselves that don't involve sitting for hours in darkness, the researchers say. Eyeglasses with amber lenses will filter out the blue light and protect your retinas. And phones, laptops and other devices can be set to block blue emissions.
"In the future, there may be phones that auto-adjust their display based on the length of usage the phone perceives," said lead author Trevor Nash, a 2019 OSU Honors College graduate who was a first-year undergraduate when the research began. "That kind of phone might be difficult to make, but it would probably have a big impact on health."
https://www.sciencedaily.com/releases/2019/10/191017101253.htm
Blue-enriched white light to wake you up in the morning
March 6, 2019
Science Daily/The Korea Advanced Institute of Science and Technology (KAIST)
Here is good news for those who have difficulty with morning alertness. A research team proposed that a blue-enriched LED light can effectively help people overcome morning drowsiness. This study will provide the basis for major changes in future lighting strategies and thereby help create better indoor environments.
Considerable research has been devoted to unmasking circadian rhythms. The 2017 Nobel Prize in Physiology or Medicine went to Jeffrey C. Hall, Michael Rosbash, and Michael W. Young for unveiling the molecular mechanisms that control circadian rhythms. In particular, the relationship between light and its physiological effects has been investigated since the discovery of a novel, third type of photoreceptor in the human retina in the early 2000s. Rods and cones regulate visual effects, while the third type, photosensitive retinal ganglion cells, regulate a large variety of biological and behavioral processes including melatonin and cortisol secretion, alertness, and functional magnetic resonance imaging (fMRI).
Initial studies on light sources have shown that blue monochromatic, fully saturated lights are effective for stimulating physiological responses, but the relative effectiveness of commercially available white light sources is less well understood. Moreover, the research was more focused on the negative effects of blue light; for instance, when people are exposed to blue light at night, they have trouble achieving deep sleep because the light restrains melatonin secretion.
However, Professor Hyeon-Jeong Suk and Professor Kyungah Choi from the Department of Industrial Design and their team argue that the effects of blue-enriched morning light on physiological responses are time dependent, and that it has positive effects on melatonin levels and the subjective perception of alertness, mood, and visual comfort compared with warm white light.
The team conducted an experiment with 15 university students. They investigated whether an hour of morning light exposure with different chromaticity would affect their physiological and subjective responses differently. The decline of melatonin levels was significantly greater after the exposure to blue-enriched white light in comparison with warm white light.
Professor Suk said, "Light takes a huge part of our lives since we spend most of our time indoors. Light is one of the most powerful tools to affect changes in how we perceive and experience the environment around us."
Professor Choi added, "When we investigate all of the psychological and physiological effects of light, we see there is much more to light than just efficient quantities. I believe that human-centric lighting strategies could be applied to a variety of environments, including residential areas, learning environments, and working spaces to improve our everyday lives."
This research was collaborated with Professor Hyun Jung Chung from the Graduate School of Nanoscience and Technology.
https://www.sciencedaily.com/releases/2019/03/190306100602.htm