How a protein in your brain could protect against Alzheimer's disease
New research sets the stage for new therapeutic strategies for Alzheimer's disease
December 13, 2019
University of Alberta
Research shows that white blood cells in the human brain are regulated by a protein called CD33--a finding with important implications in the fight against Alzheimer's disease, according to a new study.
"Immune cells in the brain, called microglia, play a critical role in Alzheimer's disease," explained Matthew Macauley, assistant professor in theDepartment of Chemistry and co-author on the paper. "They can be harmful or protective. Swaying microglia from a harmful to protective state could be the key to treating the disease."
Scientists have identified the CD33 protein as a factor that may decrease a person's likelihood of Alzheimer's disease. Less than 10 percent of the population have a version of CD33 that makes them less likely to get Alzheimer's disease. "The fact that CD33 is found on microglia suggests that immune cells can protect the brain from Alzheimer's disease under the right circumstances," said Abhishek Bhattacherjee, first author and postdoctoral fellow in the Macauley lab.
Now, Macauley's research shows that the most common type of CD33 protein plays a crucial role in modulating the function of microglia.
"These findings set the stage for future testing of a causal relationship between CD33 and Alzheimer's Disease, as well as testing therapeutic strategies to sway microglia from harmful to protecting against the disease -- by targeting CD33," said Macauley. "Microglia have the potential to 'clean up' the neurodegenerative plaques, through a process called phagocytosis -- so a therapy to harness this ability to slow down or reverse Alzheimer's disease can be envisioned."
Macauley is an investigator with GlycoNet, a Canada-wide network of researchers based at the University of Alberta that is working to further our understanding of biological roles for sugars. GlycoNet provided key funding to get this project off the ground in the Macauley lab and continues to support the ongoing applications of the project.
According to the Alzheimer's Association, 747,000 Canadians are currently living with Alzheimer's or another form of dementia. The disease affects more than 44 million people around the world.
https://www.sciencedaily.com/releases/2019/12/191213124921.htm
High-fat diets affect your brain, not just your physical appearance
September 9, 2019
Science Daily/Yale University
Much research has pointed to how an unhealthy diet correlates to obesity, but has not explored how diet can bring about neurological changes in the brain. A recent Yale study has discovered that high-fat diets contribute to irregularities in the hypothalamus region of the brain, which regulates body weight homeostasis and metabolism.
Led by Sabrina Diano, the Richard Sackler Family Professor of Cellular & Molecular Physiology and professor of neuroscience and comparative medicine, the study evaluated how the consumption of a high-fat diet -- specifically diets that include high amounts of fats and carbohydrates -- stimulates hypothalamic inflammation, a physiological response to obesity and malnutrition.
The researchers reaffirmed that inflammation occurs in the hypothalamus as early as three days after consumption of a high-fat diet, even before the body begins to display signs of obesity. "We were intrigued by the fact that these are very fast changes that occur even before the body weight changes, and we wanted to understand the underlying cellular mechanism," said Diano who is also a member of the Yale Program in Integrative Cell Signaling and Neurobiology of Metabolism.
The researchers observed hypothalamic inflammation in animals on a high fat diet and discovered that changes in physical structure were occurring among the microglial cells of animals. These cells act as the first line of defense in the central nervous system that regulate inflammation. Diano's lab found that the activation of the microglia was due to changes in their mitochondria, organelles that help our bodies derive energy from the food we consume. The mitochondria were substantially smaller in the animals on a high-fat diet. The mitochondria's change in size was due to a protein, Uncoupling Protein 2 (UCP2), which regulates the mitochondria's energy utilization, affecting the hypothalamus' control of energy and glucose homeostasis.
The UCP2-mediated activation of microglia affected neurons in the brain that, when receiving an inflammatory signal due to the high fat diet, stimulated the animals in the high-fat diet group to eat more and become obese. However, when this mechanism was blocked by removing the UCP2 protein from microglia, animals exposed to a high fat diet ate less and were resistant to gain weight.
The study not only illustrates how high-fat diets affect us physically, but conveys how an unhealthy diet can alter our food intake neurologically. "There are specific brain mechanisms that get activated when we expose ourselves to specific type of foods. This is a mechanism that may be important from an evolutionary point of view. However, when food rich in fat and carbs is constantly available it is detrimental."
Diano's long-standing goal is to understand the physiological mechanisms that regulate how much food we consume, and she continues to perform research on how activated microglia can affect various diseases in the brain, including Alzheimer's disease, a neurological disorder that is associated with changes in the brain's microglial cells and has been shown to have higher incidence among obese individuals.
https://www.sciencedaily.com/releases/2019/09/190909121234.htm
Creation of new brain cells plays an underappreciated role in Alzheimer's disease
August 30, 2019
Science Daily/University of Chicago
Researchers show how in genetic forms of Alzheimer's, a process called neurogenesis, or the creation of new brain cells, can be disrupted by the brain's own immune cells.
Much of the research on the underlying causes of Alzheimer's disease focuses on amyloid beta (Aß), a protein that accumulates in the brain as the disease progresses. Excess Aß proteins form clumps or "plaques" that disrupt communication between brain cells and trigger inflammation, eventually leading to widespread loss of neurons and brain tissue.
Aß plaques will continue to be a major focus for Alzheimer's researchers. However, new work by neuroscientists at the University of Chicago looks at another process that plays an underappreciated role in the progression of the disease.
In a new study published in the Journal of Neuroscience, Sangram Sisodia, PhD, the Thomas Reynolds Sr. Family Professor of Neurosciences at UChicago, and his colleagues show how in genetic forms of Alzheimer's, a process called neurogenesis, or the creation of new brain cells, can be disrupted by the brain's own immune cells.
Some types of early onset, hereditary Alzheimer's are caused by mutations in two genes called presenilin 1 (PS1) and presenilin 2 (PS2). Previous research has shown that when healthy mice are placed into an "enriched" environment where they can exercise, play and interact with each other, they have a huge increase in new brain cells being created in the hippocampus, part of the brain that is important for memory. But when mice carrying mutations to PS1 and PS2 are placed in an enriched environment, they don't show the same increase in new brain cells. They also start to show signs of anxiety, a symptom often reported by people with early onset Alzheimer's.
This led Sisodia to think that something besides genetics had a role to play. He suspected that the process of neurogenesis in mice both with and without Alzheimer's mutations could also be influenced by other cells that interact with the newly forming brain cells.
Focus on the microglia
The researchers focused on microglia, a kind of immune cell in the brain that usually repairs synapses, destroys dying cells and clears out excess Aß proteins. When the researchers gave the mice a drug that causes microglial cells to die, neurogenesis returned to normal. The mice with presenilin mutations were then placed into an enriched environment and they were fine; they didn't show any memory deficits or signs of anxiety, and they were creating the normal, expected number of new neurons.
"It's the most astounding result to me," Sisodia said. "Once you wipe out the microglia, all these deficits that you see in these mice with the mutations are completely restored. You get rid of one cell type, and everything is back to normal."
Sisodia thinks the microglia could be overplaying their immune system role in this case. Alzheimer's disease normally causes inflammation in the microglia, so when they encounter newly formed brain cells with presenilin mutations they may overreact and kill them off prematurely. He feels that this discovery about the microglia's role opens another important avenue toward understanding the biology of Alzheimer's disease.
"I've been studying amyloid for 30 years, but there's something else going on here, and the role of neurogenesis is really underappreciated," he said. "This is another way to understand the biology of these genes that we know significantly affect the progression of disease and loss of memory."
https://www.sciencedaily.com/releases/2019/08/190830112832.htm