America's most widely consumed oil causes genetic changes in the brain
Soybean oil linked to metabolic and neurological changes in mice
January 17, 2020
Science Daily/University of California - Riverside
New UC Riverside research shows soybean oil not only leads to obesity and diabetes, but could also affect neurological conditions like autism, Alzheimer's disease, anxiety, and depression.
Used for fast food frying, added to packaged foods, and fed to livestock, soybean oil is by far the most widely produced and consumed edible oil in the U.S., according to the U.S. Department of Agriculture. In all likelihood, it is not healthy for humans.
It certainly is not good for mice. The new study, published this month in the journal Endocrinology, compared mice fed three different diets high in fat: soybean oil, soybean oil modified to be low in linoleic acid, and coconut oil.
The same UCR research team found in 2015 that soybean oil induces obesity, diabetes, insulin resistance, and fatty liver in mice. Then in a 2017 study, the same group learned that if soybean oil is engineered to be low in linoleic acid, it induces less obesity and insulin resistance.
However, in the study released this month, researchers did not find any difference between the modified and unmodified soybean oil's effects on the brain. Specifically, the scientists found pronounced effects of the oil on the hypothalamus, where a number of critical processes take place.
"The hypothalamus regulates body weight via your metabolism, maintains body temperature, is critical for reproduction and physical growth as well as your response to stress," said Margarita Curras-Collazo, a UCR associate professor of neuroscience and lead author on the study.
The team determined a number of genes in mice fed soybean oil were not functioning correctly. One such gene produces the "love" hormone, oxytocin. In soybean oil-fed mice, levels of oxytocin in the hypothalamus went down.
The research team discovered roughly 100 other genes also affected by the soybean oil diet. They believe this discovery could have ramifications not just for energy metabolism, but also for proper brain function and diseases such as autism or Parkinson's disease. However, it is important to note there is no proof the oil causes these diseases.
Additionally, the team notes the findings only apply to soybean oil -- not to other soy products or to other vegetable oils.
"Do not throw out your tofu, soymilk, edamame, or soy sauce," said Frances Sladek, a UCR toxicologist and professor of cell biology. "Many soy products only contain small amounts of the oil, and large amounts of healthful compounds such as essential fatty acids and proteins."
A caveat for readers concerned about their most recent meal is that this study was conducted on mice, and mouse studies do not always translate to the same results in humans.
Also, this study utilized male mice. Because oxytocin is so important for maternal health and promotes mother-child bonding, similar studies need to be performed using female mice.
One additional note on this study -- the research team has not yet isolated which chemicals in the oil are responsible for the changes they found in the hypothalamus. But they have ruled out two candidates. It is not linoleic acid, since the modified oil also produced genetic disruptions; nor is it stigmasterol, a cholesterol-like chemical found naturally in soybean oil.
Identifying the compounds responsible for the negative effects is an important area for the team's future research.
"This could help design healthier dietary oils in the future," said Poonamjot Deol, an assistant project scientist in Sladek's laboratory and first author on the study.
"The dogma is that saturated fat is bad and unsaturated fat is good. Soybean oil is a polyunsaturated fat, but the idea that it's good for you is just not proven," Sladek said.
Indeed, coconut oil, which contains saturated fats, produced very few changes in the hypothalamic genes.
"If there's one message I want people to take away, it's this: reduce consumption of soybean oil," Deol said about the most recent study.
https://www.sciencedaily.com/releases/2020/01/200117080827.htm
Adolescents who consume diet high in saturated fats may develop poor stress skills
Rat study provides insights into impact of diet on brain functioning during critical developmental period
June 13, 2018
Science Daily/Loma Linda University Adventist Health Sciences Center
Adolescents who consume a diet high in saturated fats may develop poor stress coping skills, signs of post-traumatic stress disorder as adults.
"The teen years are a very critical time for brain maturation, including how well (or not) we'll cope with stress as adults," said Dr. Johnny Figueroa, Assistant Professor, Division of Physiology, Department of Basic Sciences and Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine. "The findings of our research support that the lifestyle decisions made during adolescence -- even those as simple as your diet -- can make a big difference in our ability to overcome every day challenges."
The study, "Exposure to an obesogenic diet during adolescence leads to abnormal maturation of neural and behavioral substrates underpinning fear and anxiety," investigated the impact of an obesogenic Western-like high-saturated fat diet on the development of brain areas involved in responding to fear and stress. Study findings demonstrate that the consumption of an obesogenic diet during adolescence has a profound effect on phasic and sustained components of fear in the adult rat. Notably, the rats that consumed the high-saturated fat diet exhibited more anxiety, problems with associative and non-associative learning processes and an impaired fear-startle response.
Startle reflexes, which are studied in humans and lab animals, have a prominent role in anxiety and PTSD research. In this study, consumption of an obesogenic diet during adolescence reduced the extinction of fear memories -- a major impairment observed in people suffering from PTSD. In addition to not properly learning fear associations, the rats on the high-saturated fat diet incorrectly assessed the level of threat. This suggests that obesity and associated metabolic alterations may predispose individuals to PTSD-related psychopathology.
Researchers reported that the animals in the high-saturated fat diet group exhibited alterations in the structure of brain regions associated with PTSD, including the amygdala and the prefrontal cortex. Notably, the group found that the left-brain hemisphere seems to be more vulnerable to the effects of high-saturated fat diet consumption and obesity-related metabolic alterations. Understanding the neural networks that predispose obese adolescents to developing anxiety and stress-related disorders may help target metabolic measures to alleviate the burden of mental illness in this growing population.
Figueroa said the study leaves other questions open for further investigation, such as replicability in human subjects and if the alterations seen in the brain structures are permanent or whether the effects can be reversed. Study limitations include lack of clarity on how the high-saturated fat diet impacts the adult brain, and whether the effects of the obesogenic diet on the fear response are related to deficits in fear memory consolidation, retrieval and expression.
https://www.sciencedaily.com/releases/2018/06/180613113738.htm